Development of Nonlinear Harmonic Sensors for Detection of Mechanical Damage

DE-FC26-01NT41156

Presented by
Southwest Research Institute
(Co-funding by Tuboscope Varco Inc.)

Presented at
NETL Industry Forum
Morgantown, WV September 17, 2002

Project Objectives

- Develop optimum sensor design
- Design an in-line NLH system
- Fabricate and install NLH capability on the TPS pilot pig
- ➤ Validate performance with extensive testing in laboratory and pull rig

Requirements of In-Line Mechanical Damage Sensing

- Tolerate vibration in the sensor
- Low power consumption
- Sensors immune to pressure and contamination of product
- Operate at reasonable velocity to minimize inspection times

Nonlinear Harmonics Sensors for Detection of Mechanical Damage

Principles of NLH Method

- Application of AC magnetic field causes production of odd-numbered harmonic frequencies in magnetic induction because magnetization curve is nonlinear
- Amplitude and phase of third-harmonic frequency is measured
- Stress and plastic deformation change magnetic properties (magnetoelastic effect) and thus third harmonic

NLH Generation

NLH Block Diagram

Effects of Plastic Deformation on Magnetization Curves

NLH Probe Configuration

NLH Magnitude - Eight Defects

Gouge Without Dent

NLH Response to Gouge with No I.D. Deformation

Laboratory Experiments

- Measure NLH response to dents/gouges of various severities
 - ► No pressure
 - **Pressure**
- Data taken as probe is scanned in raster pattern by mechanized scanner

NLH Testing Set-Up

NLH Scanner Deployment

Defect Set

- > 18 Defects
- Dent depths from 0.12 to 0.96 inch before rerounding from internal pressure
- ➤ Gouge Lengths from 0 to 6 inch
- ➤ Width of tool: 0.33, 0.5, 0.75 inch

Typical Defect (5C)

> Photo (O.D.)

Laser Profile (I.D.)

Comparison of Axial NLH Signals and Axial Stress: Defect 36, 800 psi 2.5% Dent, Square Tool, 6-inch Gouge

NLH Signals (uncorrected)

NLH Signals (Liftoff corrected)

Correlation between NLH Signal and FEA Predicted Stress

Coupons for Residual Field Tests

Varco Prototype Probe

NLH Sensor Suspension

Section of Sensor Ring

NLH Sensors in Place on Pig

Single-Channel Electronics

Conclusions to-date from DOT Project

- > NLH can detect dents and gouges in pipeline steel.
- ➤ NLH signal strengths are related to the stresses on the pipe inner surface, FEA provides the link between these two parameters.
- ➤ Work is progressing towards identifying an NDE-based defect severity criterion using FEA results to supplement NDE measurements.

Conclusions to Date from DOE Project

- Sensor design has been optimized and transferred to Tuboscope for fabrication
- Design concept of interface electronics has been completed
- Sensor suspension design concept is complete